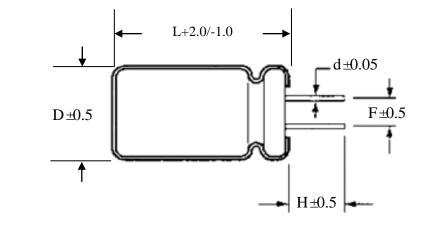


SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS PRODUCT SPECIFICATION 規格書

CUSTOMER :

(客戶):志盛翔

DATE: (日期):2020-06-09


CATEGORY (品名)	: ALUMINUM ELECTROLYTIC CAPACITORS
DESCRIPTION (型号)	: SK 25V1000μF(φ10X20)
VERSION (版本)	: 01
Customer P/N	:
SUPPLIER	:

SUPPL	IER	CUS	TOMER
PREPARED (拟定)	CHECKED (审核)	APPROVAL (批准)	SIGNATURE (签名)
邓文文	付婷婷		

ELECTROLYTIC CAPACITOR SPECIFICATION SK SERIES

SPECIFICATION SK SERIES						ALTERN	ATION HIS RECORDS	STORY
Deer	Dete				C entente			A
Rev.	Date	Mark	Pa	ge	Contents	Purpose	Drafter	Approver
	.		0.1					1
	Version		01				Page 1	

MAN YUE ELECTRONICS COMPANY LIMITED	ELECTROLYTIC CAPACITOR SPECIFICATION SK SERIES	SAMXON
Table 1 Product Dimensions and Char	racteristics	Unit: mm

Shape Code	D	10
Shape Code	L	20
СВ Туре	F	5.0
	Н	3.5
	d	0.6

N	SAMXON	WV	Cap.	Cap.	Temp.	tan ð	Leakage	Max Ripple Current	Impedance at 20°C	Load		nsion nm)		
о.	Part No.	(Vdc)	(µF)	tolerance	range(°C)	(120Hz, 20℃)	Current (µA,2min)	at 105°C 100KHz (mA rms)	100kHz (Ωmax)	lifetime (Hrs)	D×L	F	фd	Sleeve
1	ESK108M1EG20CB**P-R	25	1000	-20%~+20%	-40~105	0.14	250	2500	0.028	10000	10X20	5.0	0.6	PET
									•	•				

Version 01 Page 2

	ENTS
	Sheet
I. Application	4
2. Part Number System	4
3. Construction	5
4. Characteristics	5~10
1.1 Rated voltage & Surge voltage	
4.2 Capacitance (Tolerance)	
4.3 Leakage current	
4.4 tanδ	
4.5 Terminal strength	
4.6 Temperature characteristic	
4.7 Load life test	
4.8 Shelf life test	
4.9 Surge test	
4.10 Vibration	
4.11 Solderability test	
4.12 Resistance to solder heat	
4.13 Change of temperature	
4.14 Damp heat test	
4.15 Vent test	
4.16 Maximum permissible (ripple current)5. List of "Environment-related Substance	anges to be Controlled ('Controlled
Substances')"	ances to be controlled (controlled 11
Attachment: Application Guidelines	12~15

Version	01		Page	3
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION SK SERIES

1. Application

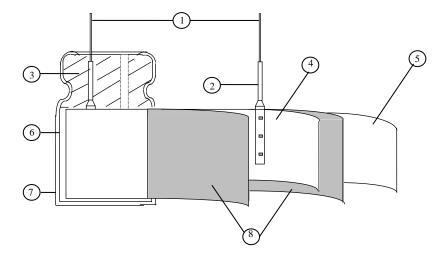
This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384.

2. Part Number System 123 456 7 89 101112 1314 1516 17 Ρ EGS 1 0 5 м 1 H **D**1 1 ТС S А SAMXON SLEEVE PRODUCT LINE MATERIAL VOLTAGE SERIES CAPACITANCE CASE SIZE TOI TYPE Feature Code Cap(MFD) Code Tolerance (%) Code Voltage (W.V.) Code Case Size SAMXON Product Lin ries ESM EKF ESS EKS 0D (d) Co 3 B 3.5 1 4 C 5 D 6.3 E For internal use only RR Radial bulk 0.1 104 ±5 J 2.5 0E (The product lines 0G 4 we have H.A.B.C.D. Ammo Taping 0.22 224 EGS 6.3 OJ EGS EKM EKG EOM EZS EGF ESF ±10 к E,M or 0,1,2,3,4,5,9) 8 0K 2.0mm Pitch тτ 0.33 334 10 1A L 13 13.5 13.5 14 4.5 c 12 ±15 12.5 1B J V τυ 2.5mm Pitch 0.47 474 16 1C м +20 20 1D 3.5mm Pitch тν ESF EGT EGK EGE EGD EGC 105 Sleeve Material 1 Code 16.5 16.5 25 1E Р PET 5.0mm Pitch тс 30 11 2.2 225 Ν ±30 18.5 32 13 ERS ERF ERL ERR 35 1V Lead Cut & Form 3.3 335 -40 w ⋚ 40 1G 25 30 34 35 40 СВ-Туре СВ 42 1M 4.7 475 -20 0 ERT ERE ERD ERH EBD А 50 1H СЕ-Туре CE 10 106 57 1L -20 +10 63 **1**J С <u>42</u> 45 HE HE-Type 22 226 71 15 40 51 63.5 76 80 90 100 ERA ERB ERC EFA -20 +40 75 1**T** х KD-Type KD 33 336 80 1K 85 1R -20 +50 FD-Type FD S 476 ENH ERW ERY ELP EAP 47 90 19 Caste 45 54 57 77 72 112 118 12 18 12 25 20 20 30 34 35 35 100 2A 4.5 -10 EH-Type EH в 100 107 120 20 5.4 125 2B PCB Termial $\begin{array}{r} 7\\ \hline 7.7\\ \hline 10.2\\ \hline 11\\ \hline 11.5\\ \hline 12\\ \hline 2.5\\ \hline 13\\ \hline \\ 13\\ \hline \end{array}$ -10 +20 227 220 EQP EDP v 150 2Z 160 2C sw ETP EHP EUP 337 330 -10 +30 180 2P Q 2D 200 Snap-in sx EKP EEP EFP ESP EVP 470 477 -10 +50 215 22 т 220 2N 13.5 sz 2200 228 -5 +10 230 23 20 25 29.5 Е 250 2E Lug SG 22000 229 275 2Т 30 31.5 35 35.5 -5 +15 F 300 21 05 35.5 50 80 100 105 110 120 30 40 33000 339 310 2R -5 +20 G 50 80 1L 1M 1N 1P 06 2F 315 EWS EWH EWL EWB VSS 47000 479 2U 330 0 +20 R 350 Т5 2V 10T 100000 Screw 2X 0 +30 360 0 т6 VNS 375 2Q 150000 15T 10 1R 1E 2Y 40 50 VKS VKM VRL VNH 385 +50 Т D5 400 2G 220000 22T 15 1F 1T +5 +15 z 420 2M D6 450 2W VRF 330000 33T +5 D 500 2H 550 25 1000000 10M +10+50 Y 600 26 630 2J 1500000 15M +10 +30 н 2200000 22M 3300000 33M 5

Version

01

Page


4

ELECTROLYTIC CAPACITOR SPECIFICATION SK SERIES

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

No	Component	Material
1	Lead line	Tinned CP wire (Pb Free)
2	Terminal	Aluminum wire
3	Sealing Material	Rubber
4	Al-Foil (+)	Formed aluminum foil
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil
6	Case	Aluminum case
7	Sleeve	PET
8	Separator	Electrolyte paper

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

Ambient temperature	:15°C to 35°C
Relative humidity	: 45% to 85%
Air Pressure	: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature	$: 20^{\circ}C \pm 2^{\circ}C$
Relative humidity	: 60% to 70%
Air Pressure	: 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2.

Varian	01		5
version	01		3
V CI SIOII	01		5

ELECTROLYTIC CAPACITOR SPECIFICATION SK SERIES

	ITEM				PERFC	RMANC	CE				
	Rated voltage										
	(WV)	WV (V.DC)	6.3	10	16	25	35	50	63	100	
4.1		SV (V.DC)	8	13	20	32	44	63	79	125	
	Surge voltage (SV)									. <u> </u>	
4.2	Nominal capacitance (Tolerance)	Condition> Measuring F Measuring V Measuring T <criteria> Shall be with</criteria>	requency oltage 'emperat	: N ure : 20)±2℃	han 0.5V					
4.3	Leakage current	<condition> Connecting t minutes, and <criteria> Refer to Table</criteria></condition>	he capao then, me		-		sistor (1	kΩ ±10)Ω) in s	eries for 2	
4.4	tanδ	<condition> See 4.2, Norr <criteria> Refer to Table</criteria></condition>	n Capac	itance, fo	or measur	ing frequ	iency, vo	oltage and	d tempera	ature.	
4.5	Terminal strength	0.5r Over 0. < Criteri	ength of capacitor rength of pacitor, $2 \sim 3$ seco er of lea nm and l 5mm to a >	r, applied F Termina applied f nds, and d wire less 0.8mm	force to lls. force to b then ber Tens	ent the te t it for 9 ile force (kgf) $\overline{5} (0.51)$ $\overline{0} (1.0)$	erminal (0° to its N	1~4 mm ; original ; Bending (k 2.5 (5 (0	from the position g force N gf) 0.25) 0.51)	rubber) fo	

ELECTROLYTIC CAPACITOR SPECIFICATION SK SERIES

		<condition></condition>	T				
		STEP	Testing Temp	erature(℃) Time		
		1	$20\pm$	2	Time to reach thermal equilibrium		
		2	-40(-25)) ±3	Time to reach thermal equilibrium		
		3	20±	2	Time to reach thermal equilibrium		
		4	105±	-2	Time to reach thermal equilibrium		
		5	$20\pm$		Time to reach thermal equilibrium		
		<criteria></criteria>	20 -	2	The to reach domai equilibrium		
	Temperature		hall be within th	e limit of	Item 4 4		
1 (characteristi				hall not more than 8 times of its specified		
4.6	cs	value.	anage current n	iousuiou s	and not more than a times of its specific		
			5, $tan\delta$ shall be	within the	e limit of Item 4.4		
		-			not exceed the value of the following table		
			Voltage (V)	25			
			C/Z+20°C	2			
				_	e shall be measured at 120Hz		
					city is within -15% of initial value which i		
				-	city is within -15% of initial value which i		
		tested a	t +20°C tempera	ature.			
		•					
		<condition></condition>					
	Accordin	ng to IEC60384	-4No.4.13	methods, The capacitor is stored at a			
	at a temperature of 105 $^{\circ}$ C ± 2 with DC bias voltage plus the rated ripple current						
		for Table1. (The sum of DC and ripple peak voltage shall not exceed the rate					
		working voltage) Then the product should be tested after 16 hours recovering					
	T 1	· · ·	/ 1 ·	1:4:			
	Load	time at a	tmospheric cond	intions.			
4.7	Load life	The resu	lt should meet th		ng table:		
4.7	Load life test	The resu <criteri< b=""></criteri<>	lt should meet tl	he followi	-		
4.7	life	The resu <criteri< b=""> The char</criteri<>	It should meet the should meet	he followi	llowing requirements.		
4.7	life	The resu <criteri< b=""> The char Leakag</criteri<>	It should meet the should meet the should meet the should meet the should be	he followi neet the fo Value in	llowing requirements. 4.3 shall be satisfied		
4.7	life	The resu <criteri< b=""> The char Leakag</criteri<>	It should meet the should meet	he followi neet the fo Value in	llowing requirements.		
4.7	life	The resu <criteri< b=""> The char Leakag</criteri<>	It should meet the should meet the should meet the should meet the should be	he followi neet the fo Value in Within ±	llowing requirements. 4.3 shall be satisfied		
4.7	life	The resu <criteri< b=""> The char Leakag Capaci</criteri<>	It should meet the should meet the sector is the shall receive the shall receive the shall receive the shall receive the sector shall receive the shall receive the sector shall be sha	he followi neet the fo Value in Within \pm Not more	Solution for the set of the set		
4.7	life	The resu <criteri< b=""> The char Leakag Capaci tanð</criteri<>	It should meet the should meet the sector is the shall receive the shall receive the shall receive the shall receive the sector shall receive the shall receive the sector shall be sha	he followi neet the fo Value in Within \pm Not more	llowing requirements. 4.3 shall be satisfied $\pm 25\%$ of initial value(6.3,10V: $\leq \pm 30\%$) than 200% of the specified value.		
4.7	life	The resu < Criteri The char Leakag Capaci tanδ Appear < Condition >	It should meet the state of the	he followi neet the fo Value in Within = Not more There sh	llowing requirements. 4.3 shall be satisfied $\pm 25\%$ of initial value(6.3,10V: $\leq \pm 30\%$) than 200% of the specified value.		
4.7	life	The resu < Criteri The char Leakag Capaci tanδ Appear < Condition > The capac	It should meet the racteristic shall r recteristic shall r te current tance Change rance	he followi neet the fo Value in Within = Not more There sh	llowing requirements. 4.3 shall be satisfied 25% of initial value(6.3,10V: $\leq \pm 30\%$) than 200% of the specified value. all be no leakage of electrolyte.		
4.7	life	The resu <Criteri The char Leakag Capaci tan δ Appear <Condition> The capac $2\degree$ C for 10	It should meet the racteristic shall r ge current tance Change rance itors are then sto 2000+48/0 hours.	he followi neet the fo Value in Within \pm Not more There sh	Allowing requirements. 4.3 shall be satisfied $= 25\%$ of initial value(6.3,10V: $\leq \pm 30\%$) than 200% of the specified value. all be no leakage of electrolyte. no voltage applied at a temperature of 105 =		
4.7	life test	The resu < Criteri The char Leakag Capaci tanδ Appear < Condition> The capac 2°C for 10 Following	It should meet the racteristic shall r ge current tance Change rance itors are then sto 000+48/0 hours. g this period the	he followi neet the fo Value in Within \pm Not more There sh ored with n capacitors	Ilowing requirements. 4.3 shall be satisfied 25% of initial value(6.3,10V:≤±30%) at than 200% of the specified value. all be no leakage of electrolyte. no voltage applied at a temperature of 105 = shall be removed from the test chamber an		
4.7	life	The resu <Criteri The char Leakag Capaci tan δ Appear <Condition> The capac $2^{\circ}C$ for 10 Following be allowe	It should meet the state of the	he followi neet the fo Value in Within $\frac{1}{2}$ Not more There sh ored with r capacitors t room ten	Ilowing requirements. 4.3 shall be satisfied 25% of initial value(6.3,10V:≤±30%) e than 200% of the specified value. all be no leakage of electrolyte. no voltage applied at a temperature of 105 = shall be removed from the test chamber an apperature for 4~8 hours.		
	life test Shelf	The resu < Criteri The char Leakag Capaci tanδ Appear < Condition> The capac 2°C for 10 Following be allowe Next they	It should meet the racteristic shall r recurrent tance Change rance itors are then sto 000+48/0 hours. g this period the d to stabilized a y shall be connect	he followi neet the fo Value in Within = Not more There sh ored with r capacitors t room ten cted to a s	allowing requirements. 4.3 shall be satisfied 25% of initial value(6.3,10V:≤±30%) at than 200% of the specified value. all be no leakage of electrolyte. no voltage applied at a temperature of 105 = a shall be removed from the test chamber an aperature for 4~8 hours. eries limiting resistor(1k±100Ω) with D.0		
	life test Shelf life	The resu <Criteri The char Leakag Capaci tan δ Appear <Condition> The capac 2°C for 10 Following be allowe Next they rated volt	It should meet the racteristic shall r rectristic shall r recurrent tance Change rance itors are then sto 000+48/0 hours. g this period the d to stabilized ar y shall be connect age applied for the	he followi neet the fo Value in Within = Not more There sh ored with n capacitors t room ten cted to a s 30min. Af	Ilowing requirements. 4.3 shall be satisfied 25% of initial value(6.3,10V:≤±30%) e than 200% of the specified value. all be no leakage of electrolyte. no voltage applied at a temperature of 105 = shall be removed from the test chamber an apperature for 4~8 hours.		
	life test Shelf life	The resu <Criteri The char Leakag Capaci tan δ Appear <Condition> The capac 2°C for 10 Following be allowe Next they rated volt	It should meet the racteristic shall r recteristic shall r recurrent tance Change rance itors are then sto 200+48/0 hours. g this period the d to stabilized a r shall be connect	he followi neet the fo Value in Within = Not more There sh ored with n capacitors t room ten cted to a s 30min. Af	allowing requirements. 4.3 shall be satisfied 25% of initial value(6.3,10V:≤±30%) at than 200% of the specified value. all be no leakage of electrolyte. no voltage applied at a temperature of 105 = a shall be removed from the test chamber an aperature for 4~8 hours. eries limiting resistor(1k±100Ω) with D.0		
	life test Shelf life	The resu <Criteri The char Leakag Capaci tan δ Appear <Condition> The capac 2°C for 10 Following be allowe Next they rated volt	It should meet the racteristic shall r rectristic shall r recurrent tance Change rance itors are then sto 000+48/0 hours. g this period the d to stabilized ar y shall be connect age applied for the	he followi neet the fo Value in Within = Not more There sh ored with n capacitors t room ten cted to a s 30min. Af	allowing requirements. 4.3 shall be satisfied 25% of initial value(6.3,10V:≤±30%) at than 200% of the specified value. all be no leakage of electrolyte. no voltage applied at a temperature of 105 = a shall be removed from the test chamber an aperature for 4~8 hours. eries limiting resistor(1k±100Ω) with D.0		
	life test Shelf life	The resu <Criteri The char Leakag Capaci tan δ Appear <Condition> The capac 2°C for 10 Following be allowe Next they rated volt	It should meet the racteristic shall r rectristic shall r recurrent tance Change rance itors are then sto 000+48/0 hours. g this period the d to stabilized ar y shall be connect age applied for the	he followi neet the fo Value in Within = Not more There sh ored with n capacitors t room ten cted to a s 30min. Af	allowing requirements. 4.3 shall be satisfied 25% of initial value(6.3,10V:≤±30%) at than 200% of the specified value. all be no leakage of electrolyte. no voltage applied at a temperature of 105 = a shall be removed from the test chamber an aperature for 4~8 hours. eries limiting resistor(1k±100Ω) with D.0		
	life test Shelf life	The resu <Criteri The char Leakag Capaci tan δ Appear <Condition> The capac 2°C for 10 Following be allowe Next they rated volt	It should meet the racteristic shall r rectristic shall r recurrent tance Change rance itors are then sto 000+48/0 hours. g this period the d to stabilized ar y shall be connect age applied for the	he followi neet the fo Value in Within = Not more There sh ored with n capacitors t room ten cted to a s 30min. Af	allowing requirements. 4.3 shall be satisfied 25% of initial value(6.3,10V:≤±30%) at than 200% of the specified value. all be no leakage of electrolyte. no voltage applied at a temperature of 105 = a shall be removed from the test chamber an aperature for 4~8 hours. eries limiting resistor(1k±100Ω) with D.0		
	life test Shelf life	The resu <Criteri The char Leakag Capaci tan δ Appear <Condition> The capac 2°C for 10 Following be allowe Next they rated volt	It should meet the racteristic shall r rectristic shall r recurrent tance Change rance itors are then sto 000+48/0 hours. g this period the d to stabilized ar y shall be connect age applied for the	he followi neet the fo Value in Within = Not more There sh ored with n capacitors t room ten cted to a s 30min. Af	allowing requirements. 4.3 shall be satisfied 25% of initial value(6.3,10V:≤±30%) at than 200% of the specified value. all be no leakage of electrolyte. no voltage applied at a temperature of 105 = a shall be removed from the test chamber an aperature for 4~8 hours. eries limiting resistor(1k±100Ω) with D.0		
	life test Shelf life	The resu <Criteri The char Leakag Capaci tan δ Appear <Condition> The capac 2°C for 10 Following be allowe Next they rated volt	It should meet the racteristic shall r rectristic shall r recurrent tance Change rance itors are then sto 000+48/0 hours. g this period the d to stabilized ar y shall be connect age applied for the	he followi neet the fo Value in Within = Not more There sh ored with n capacitors t room ten cted to a s 30min. Af	allowing requirements. 4.3 shall be satisfied 25% of initial value(6.3,10V:≤±30%) at than 200% of the specified value. all be no leakage of electrolyte. no voltage applied at a temperature of 105 = a shall be removed from the test chamber an aperature for 4~8 hours. eries limiting resistor(1k±100Ω) with D.0		
	life test Shelf life	The resu <Criteri The char Leakag Capaci tan δ Appear <Condition> The capac 2°C for 10 Following be allowe Next they rated volt	It should meet the racteristic shall r rectristic shall r recurrent tance Change rance itors are then sto 000+48/0 hours. g this period the d to stabilized ar y shall be connect age applied for the	he followi neet the fo Value in Within = Not more There sh ored with n capacitors t room ten cted to a s 30min. Af	allowing requirements. 4.3 shall be satisfied 25% of initial value(6.3,10V:≤±30%) at than 200% of the specified value. all be no leakage of electrolyte. no voltage applied at a temperature of 105 = a shall be removed from the test chamber an aperature for 4~8 hours. eries limiting resistor(1k±100Ω) with D.0		

Version	01		Page	7
---------	----	--	------	---

		<criteria></criteria>	
			neet the following requirements.
		Leakage current	Value in 4.3 shall be satisfied
	Shelf	Capacitance Change	Within $\pm 25\%$ of initial value(6.3,10V: $\leq \pm 30\%$)
4.8	life	tanδ	Not more than 200% of the specified value.
	test	Appearance	There shall be no leakage of electrolyte.
		Remark: If the capacitors are	stored more than 1 year, the leakage current may
		increase. Please apply voltage	e through about 1 k Ω resistor, if necessary.
4.9	Surge test	The capacitor shall be submit followed discharge of 5 min The test temperature shall b C_R :Nominal Capacitance (μ <criteria></criteria> Leakage current Capacitance Change tan δ Appearance Attention:	 be 15~35°C. J F) Not more than the specified value. Within ±15% of initial value. Not more than the specified value. There shall be no leakage of electrolyte. ge at abnormal situation only. It is not applicable to such
4.10	Vibration test	perpendicular directions. Vibration frequency ra Peak to peak amplitude Sweep rate Mounting method: The capacitor with diameter g in place with a bracket. 4mm or less Z After the test, the following in Inner construction	e : 1.5mm : 10Hz ~ 55Hz ~ 10Hz in about 1 minute greater than 12.5mm or longer than 25mm must be fixed Within 30°

			(
Version	01		8

ELECTROLYTIC CAPACITOR SPECIFICATION SK SERIES

		<condition></condition>				
		The capacitor shall be tes	•	conditions:		
		Soldering temperature : 245±3°C				
	Coldenshility	Dipping depth	: 2mm			
4.11 Solderability test	Dipping speed	: 25±2.5mr	n/s			
	Dipping time <criteria></criteria>	: 3±0.5s				
		< <u>Criteria></u>	A minimu	m of 95% of the surface be	ing	
		Coating quality	immersed	In or 75% of the surface be	ing	
		<condition></condition>				
			citor shall be immersed			
		260 ± 5 °C for 10 ± 1 sec	conds or $400 \pm 10^{\circ}$ C for:	B_{-0}^{+1} seconds to 1.5~2.0mm	from the	
		body of capacitor .				
	Resistance to			nal temperature and norma	al	
4.12	solder heat	humidity for 1~2 hour	s before measurement.			
	test		Not more than	the specified value.	T	
		Leakage current		1	_	
		Capacitance Change		of initial value.	-	
		tanδ	Not more than	Not more than the specified value.		
		Appearance	There shall be	There shall be no leakage of electrolyte.		
		<condition></condition>				
				.4.7methods, capacitor sha	all be	
		placed in an oven, the con	Time			
			emperature			
		(1)+20℃		≤ 3 Minutes		
	Change of	(2)Rated low temper	ature (-40°C) (-25°C)	30 ± 2 Minutes		
4.13	temperature	(3)Rated high temper	rature (+105 $^{\circ}$ C)	30 ± 2 Minutes		
	test	(1) to (3)=1 cycle, to	tal 5 cycle			
		<criteria></criteria>				
		The characteristic shall m				
		Leakage current	Not more than the			
		tanδ	Not more than the	-		
		Appearance	There shall be no l	eakage of electrolyte.		
		<condition></condition>				
		Humidity Test:			500 L 0	
		e	· 1	citor shall be exposed for		
				${}^{\circ}\!\!\!{}^{\circ}\!\!\!{}^{\circ}$, the characteristic chan	ige shall	
		meet the following requir <criteria></criteria>	ement.			
	-		Not more than the an	aified value		
4.14	Damp heat	Leakage current	Not more than the spectrum $\pm 20\%$ of initial			
	test	Capacitance Change tanδ				
				of the specified value.		
		Appearance	There shall be no leas	lage of electrolyte.		
-						

Version	01		Page	9
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION SK SERIES

4.15	Vent test	22.4 or less	th its polar able is appl rrent (A) 1 10 dangerous	rity reversed lied.	d to a DC p	ower source	e. Then a
4.16	Maximum permissible (ripple current)	<condition> The maximum permissible ri at 120Hz and can be applied Table-1 The combined value of D.C rated voltage and shall not re Frequency Multipliers: Coefficient (Hz) Cap. (µ F) 33~270 330~680 820~1800 2200~8200</condition>	at maxim	um operatin d the peak A	g temperatu	ure	xceed the
4.16	permissible (ripple	Table-1 The combined value of D.C rated voltage and shall not re Frequency Multipliers: Coefficient (Hz) Cap. (µ F) 33~270 330~680 820~1800	voltage an everse volt 120 0.50 0.55 0.60	d the peak <i>A</i> tage. 1k 0.73 0.77 0.80	A.C voltage 10k 0.92 0.94 0.96	e shall not ex 100k 1.00 1.00 1.00	

Version 01	Page 10
------------	---------

5. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances					
	Cadmium and cadmium compounds					
Heavy metals	Lead and lead compounds					
	Mercury and mercury compounds					
	Hexavalent chromium compounds					
	Polychlorinated biphenyls (PCB)					
Chloinated	Polychlorinated naphthalenes (PCN)					
organic	Polychlorinated terphenyls (PCT)					
compounds	Short-chain chlorinated paraffins(SCCP)					
	Other chlorinated organic compounds					
D	Polybrominated biphenyls (PBB)					
Brominated organic	Polybrominated diphenylethers(PBDE) (including					
	decabromodiphenyl ether[DecaBDE])					
compounds	Other brominated organic compounds					
Tributyltin comp	oounds(TBT)					
Triphenyltin con	npounds(TPT)					
Asbestos						
Specific azo com	pounds					
Formaldehyde						
Beryllium oxide						
Beryllium copp	er					
Specific phthalat	es (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)					
Hydrofluorocarb	on (HFC), Perfluorocarbon (PFC)					
Perfluorooctane	sulfonates (PFOS)					
Specific Benzotr	iazole					

Version	01		Page	11
---------	----	--	------	----

SAMXON

Attachment: Application Guidelines

1.Circuit Design

- 1.1 Operating Temperature and Frequency Electrolytic capacitor electrical parameters are normally specified at 20°C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.
- (1) Effects of operating temperature on electrical parameters

 At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 - b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
- (2) Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while $\tan \delta$ increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).
- 1.2 Operating Temperature and Life Expectancy See the file: Life calculation of aluminum electrolytic capacitor
- 1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

- 1.4 Using Two or More Capacitors in Series or Parallel
- (1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

- 1.5 Capacitor Mounting Considerations
- (1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2)Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

φ6.3~φ16mm:2mm minimum, φ18~φ35mm:3mm minimum, φ40mm or greater:5mm minimum.

(5) Clearance for Seal Mounted Pressure Relief Vents

A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.

Version	01		Page	12
---------	----	--	------	----

SK SERIES						
 (6) Wiring Near the Pressure Relief Vent Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas exceeding 100°C may be released which could dissolve the wire insulation and ignite. (7) Circuit Board patterns Under the Capacitor Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short. (8) Screw Terminal Capacitor Mounting Do not orient the capacitor with the screw terminal side of the capacitor facing downwards. Tighten the terminal and mounting bracket screws within the torque range specified in the specification.						
 Electrical Isolation of the Capacitor Completely isolate the capacitor as follows. Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths. 						
1.7 The Product endurance should take the sample as the standard.						
1.8 If conduct the load or shelf life test, must be collect date code within 6 months products of sampling.						
 1.9 Capacitor Sleeve The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the capacitor. The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures. 						
CAUTION! Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open circuits which could occur during use. (1) Provide protection circuits and protection devices to allow safe failure modes. (2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure.						
 2.Capacitor Handling Techniques 2.1 Considerations Before Using Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment. (2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged with a resistor with a value of about 1kΩ. (3) Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying rated voltage in series with a resistor of approximately 1kΩ. (4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors. (5) Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result. 						
 2.2 Capacitor Insertion Verify the correct capacitance and rated voltage of the capacitor. Verify the correct polarity of the capacitor before inserting. Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals. Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor. For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection. 						
 2.3 Manual Soldering (1) Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less. (2) If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal. (3) If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads. (4) Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve. 						
 2.4 Flow Soldering (1) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result. (2) Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits. (3) Do not allow other parts or components to touch the capacitor during soldering. 						

2.5 Other Soldering Considerations Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve. For heat curing, do not exceed 150°C for a maximum time of 2 minutes.

Version ()1	Page	13
-----------	----	------	----

2.6 Capacitor Handling after Solder

- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.
- 2.7 Circuit Board Cleaning
- (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60°C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- (2) Avoid using the following solvent groups unless specifically allowed for in the specification;

Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.

- Alkali solvents : could attack and dissolve the aluminum case.
- Petroleum based solvents: deterioration of the rubber seal could result.
- Xylene : deterioration of the rubber seal could result. Acetone
 - : removal of the ink markings on the vinvl sleeve could result.
- (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor. Please consult us for additional information about acceptable cleaning solvents or cleaning methods.

2.8 Mounting Adhesives and Coating Agents

When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

3.1 Environmental Conditions

- Capacitors should not be stored or used in the following environments.
- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100°C temperatures.

If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.

If electrolyte or gas is ingested by month, gargle with water.

If electrolyte contacts the skin, wash with soap and water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail. After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000Ω , current limiting resistor for a time period of 30 minutes. If the expired date of products date code is over eighteen months, the products should be return to confirmation.

5.1 Environmental Conditions

	Version	01		Page	14
--	---------	----	--	------	----

The capacitor shall be not use in the following condition:

(1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.

(2) Direct contact with water, salt water, or oil.

(3) High humidity conditions where water could condense on the capacitor.

(4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.

(5) Exposure to ozone, radiation, or ultraviolet rays.

(6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise). Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the

polyvinyl chloride sleeve, etc.

Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.

Version	01		Page	15
---------	----	--	------	----